skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qin, Zhenpeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A phenol molecule is shown at its free energy minimum in atransazo-PC lipid bilayer, where it interacts with the azobenzene groups that are incorporated into one of the two phosphatidylcholine lipid tails. 
    more » « less
    Free, publicly-accessible full text available January 23, 2026
  2. The human brain represents one of the most complex biological systems, containing billions of neurons interconnected through trillions of synapses. Inherent to the brain is a biochemical complexity involving ions, signaling molecules, and peptides that regulate neuronal activity and allow for short- and long-term adaptations. Large-scale and noninvasive imaging techniques, such as fMRI and EEG, have highlighted brain regions involved in specific functions and visualized connections between different brain areas. A major shortcoming, however, is the need for more information on specific cell types and neurotransmitters involved, as well as poor spatial and temporal resolution. Recent technologies have been advanced for neuronal circuit mapping and implemented in behaving model organisms to address this. Here, we highlight strategies for targeting specific neuronal subtypes, identifying, and releasing signaling molecules, controlling gene expression, and monitoring neuronal circuits in real-timein vivo. Combined, these approaches allow us to establish direct causal links from genes and molecules to the systems level and ultimately to cognitive processes. 
    more » « less
  3. Abstract Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology. 
    more » « less
  4. Point-of-care (POC) tests for the diagnosis of diseases are critical to the improvement of the standard of living, especially for resource-limited areas or countries. In recent years, nanobiosensors based on noble metal nanoparticles (NM NPs) have emerged as a class of effective and versatile POC testing technology. The unique features of NM NPs ensure great performance of associated POC nanobiosensors. In particular, NM NPs offer various signal transduction principles, such as plasmonics, catalysis, photothermal effect, and so on. Significantly, the detectable signal from NM NPs can be tuned and optimized by controlling the physicochemical parameters (e.g., size, shape, and elemental composition) of NPs. In this article, we introduce the inherent merits of NM NPs that make them attractive for POC testing, discuss recent advancement of NM NPs-based POC tests, highlight their social impacts, and provide perspectives on challenges and opportunities in the field. We hope the review and insights provided in this article can inspire new fundamental and applied research in this emerging field. 
    more » « less
  5. null (Ed.)